Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

A host-guest complex of diaquabis-[1-hydroxy-2(1H)-pyridinethionatoO,S]magnesium(II) and 2,2'-dithiobis(pyridine N -oxide)

Andrew Bond* and William Jones

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
Correspondence e-mail: adb29@cam.ac.uk

Received 12 August 1999
Accepted 22 October 1999
The title compound, $\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, is a two-component host-guest material. The $2,2^{\prime}$-dithiobis(pyridine N-oxide) molecule has crystallographic twofold symmetry. The metal complex lies on an inversion centre and associates via $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions into chains which thread the $2,2^{\prime}$-dithiobis(pyridine N-oxide) lattice in perpendicular directions. Hydrogen bonds exist between the water molecules of the diaquamagnesium units and the $\mathrm{N}-\mathrm{O}$ groups of the host lattice.

Comment

1-Hydroxypyridine-2(1H)-thione, pyrithione, has been widely studied as a result of its fungicidal properties (Albert et al., 1956; Chandler \& Segel, 1978; Bond \& Jones, 1999). Pyrithione is readily oxidized to the disulfide, i.e. $2,2^{\prime}$-dithiobis(pyridine N-oxide) (DTPO), which also displays fungicidal activity (Paulus, 1993). The crystal structure of DTPO consists of a three-dimensional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$-bonded lattice composed of two interpenetrated homochiral networks (Bodige et al., 1997). The DTPO lattice has been shown to be suitable for guest inclusion by the formation of the host-guest complexes $[\mathrm{TCNB}][\mathrm{DTPO}]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ and $[\mathrm{PMDA}][\mathrm{DTPO}]_{2}$, where TCNB and PMDA represent 1,2,4,5-tetracyanobenzene and pyromellitic dianhydride, respectively (Bodige et al., 1997). The title compound, $\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, (I), is a host-guest material in which a diaquamagnesium complex of pyrithione is incorporated into a DTPO lattice.

(I)

The Mg atom of the $\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ unit occupies a centre of symmetry and adopts distorted octahedral coor-
dination via two bidentate pyrithione ligands and two water molecules (Fig. 1). The pyrithione ligands are tilted with respect to the equatorial plane defined by $\mathrm{O} 1, \mathrm{~S} 1, \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{S} 1^{\mathrm{i}}$ [symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y,-z$], forming an angle of 27.5 (1) ${ }^{\circ}$. The DTPO molecule is chiral as a result of the fixed $\mathrm{C} 6-\mathrm{S} 2-\mathrm{S} 2^{\mathrm{ii}}-\mathrm{C}^{\mathrm{ii}}$ torsion angle [symmetry code: (ii) $-x, y$, $\left.\frac{1}{2}-z\right]$; both enantiomers are present in the crystal. The magnitude of this torsion angle, $80.3(1)^{\circ}$, is considerably less than the value of $90.2(2)^{\circ}$ observed in DTPO itself, showing the DTPO lattice to be distorted significantly on incorporation of the $\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ guest.

The $\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ units in (I) are linked via $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{S}$ interactions [C4ㅇS $1^{\text {iii }} 3.565$ (2) \AA and $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~S}_{1}{ }^{\mathrm{iii}}$ 147.6°; symmetry code: (iii) $\left.-\frac{1}{2}+x,-\frac{1}{2}+y, z\right]$ into chains running parallel to [110] and [110]. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ network observed in DTPO is disrupted by guest insertion and the dominant interactions in (I) are hydrogen bonds between the water molecules of the diaquamagnesium units and the $\mathrm{N}-\mathrm{O}$ groups of the DTPO lattice [$\mathrm{H} 100 \cdots \mathrm{O}^{2 \mathrm{iv}} 1.91$ (2) \AA and $\mathrm{O} 3-$ $\mathrm{H} 100 \cdots \mathrm{O} 2^{\text {iv }} 174(2)^{\circ} ; \mathrm{H} 101 \cdots \mathrm{O} 2^{\mathrm{v}} 2.02(2) \AA$ and $\mathrm{O} 3-$ H101 $\cdots \mathrm{O} 2^{\mathrm{v}} 160(2)^{\circ}$; symmetry codes: (iv) $\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$; (v) $\left.\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$ (Fig. 2).

The structure of (I) may be related to that of $[\mathrm{PMDA}][\mathrm{DTPO}]_{2}$ in which PMDA molecules associate via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions to yield chains similar to the $\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ chains in (I). These thread the DTPO lattice in one direction giving rise to a solid-state polypseudorotaxane structure. The planar nature of the PMDA chains allows for face-to-face aromatic interactions between the PMDA molecules and the DTPO lattice. In (I), however, the diaquamagnesium unit introduces water molecules above and below the plane of the $\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ chains, facilitating additional hydrogen-bond interactions with the DTPO lattice and giving rise to the new threedimensional architecture.

Figure 1
The molecular units in (I) showing displacement ellipsoids at 50% probability [symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y,-z$; (ii) $-x, y, \frac{1}{2}-z$]. H atoms have been omitted.

Figure 2
View of (I) parallel to [110] with the DTPO lattice shaded grey. $\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ chains run vertically and normal to the plane of the page. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions are indicated by dotted lines.

Experimental

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NOS}$ and $\mathrm{Mg}(\mathrm{OAc})_{2}$ were dissolved in an $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ mixture with stirring. The solvent was removed by evaporation and the resulting powder was recrystallized from EtOH to yield single crystals of (I).

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot-$	$D_{x}=1.583 \mathrm{Mg} \mathrm{m}^{-3}$ $\quad \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=564.95$	Mo $K \alpha$ radiation
Monoclinic, $C 2 / c$	Cell parameters from 25
$a=8.101(2) \AA$	reflections
$b=13.564(3) \AA$	$\theta=12.5-15.0^{\circ}$
$c=21.573(4) \AA$	$\mu=0.474 \mathrm{~mm}^{-1}$
$\beta=91.13(3)^{\circ}$	$T=296(2) \mathrm{K}$
$V=2370.1(8) \AA^{3}$	Block, colourless
$Z=4$	$0.6 \times 0.3 \times 0.3 \mathrm{~mm}$

Data collection

Rigaku AFC-7R four-circle diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.840, T_{\text {max }}=0.867$
2910 measured reflections
2721 independent reflections
2179 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.096$
$S=1.016$
2721 reflections
166 parameters
H atoms treated by a mixture of independent and constrained refinement
The water H atoms, H 100 and H 101 , were located in a difference Fourier map and refined with a fixed isotropic displacement parameter of $0.05 \AA^{2}$ and a restrained $\mathrm{O}-\mathrm{H}$ distance of 0.82 (2) \AA.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1998); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL/PC (Sheldrick, 1994) and CAMERON (Pearce et al., 1993); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC and Avecia (formerly Zeneca Specialties) for funding and Dr Neil Feeder for assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1120). Services for accessing these data are described at the back of the journal.

References

Albert, A., Rees, C. W. \& Tomlinson, A. J. H. (1956). Br. J. Pathol. 37, 500-511. Bodige, S. G., Rogers, R. D. \& Blackstock, S. C. (1997). J. Chem. Soc. Chem. Commun. pp. 1669-1670.
Bond, A. D. \& Jones, W. (1999). Acta Cryst. C55, 1536-1538.
Chandler, C. J. \& Segel, I. H. (1978). Antimicrob. Agents Chemother. 14, 60-68.
Molecular Structure Corporation (1995). TEXSAN. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1998). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Paulus, W. (1993). In Microbicides for the Protection of Materials: A Handbook. London: Chapman and Hall.
Pearce, L. J., Watkin, D. J. \& Prout C. K. (1993). CAMERON. University of Oxford, England.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

